1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
|
#include "memory.h"
using namespace machine;
#if __BYTE_ORDER == __LITTLE_ENDIAN
#define SH_NTH_8(OFFSET) ((3 - ((OFFSET) & 0b11)) * 8)
#define SH_NTH_16(OFFSET) ((1 - ((OFFSET) & 0b10)) * 16)
#else
#define SH_NTH_8(OFFSET) (((OFFSET) & 0b11) * 8)
#define SH_NTH_16(OFFSET) (((OFFSET) & 0b10) * 16)
#endif
void MemoryAccess::write_byte(std::uint32_t offset, std::uint8_t value) {
int nth = SH_NTH_8(offset);
std::uint32_t mask = 0xff << nth; // Mask for n-th byte
wword(offset, (rword(offset) & ~mask) | (((std::uint32_t)value << nth) & mask));
}
void MemoryAccess::write_hword(std::uint32_t offset, std::uint16_t value) {
int nth = SH_NTH_16(offset);
std::uint32_t mask = 0xffff << nth; // Mask for n-th half-word
wword(offset, (rword(offset) & ~mask) | (((std::uint32_t)value << nth) & mask));
}
void MemoryAccess::write_word(std::uint32_t offset, std::uint32_t value) {
wword(offset, value);
}
std::uint8_t MemoryAccess::read_byte(std::uint32_t offset) const {
int nth = SH_NTH_8(offset);
return (std::uint8_t)(rword(offset) >> nth);
}
std::uint16_t MemoryAccess::read_hword(std::uint32_t offset) const {
int nth = SH_NTH_16(offset);
return (std::uint16_t)(rword(offset) >> nth);
}
std::uint32_t MemoryAccess::read_word(std::uint32_t offset) const {
return rword(offset);
}
void MemoryAccess::write_ctl(enum MemoryAccess::AccessControl ctl, std::uint32_t offset, std::uint32_t value) {
switch (ctl) {
case AC_NONE:
break;
case AC_BYTE:
case AC_BYTE_UNSIGNED:
this->write_byte(offset, (std::uint8_t) value);
break;
case AC_HALFWORD:
case AC_HALFWORD_UNSIGNED:
this->write_hword(offset, (std::uint16_t) value);
break;
case AC_WORD:
this->write_word(offset, value);
break;
default:
throw QTMIPS_EXCEPTION(UnknownMemoryControl, "Trying to write to memory with unknown ctl", QString::number(ctl));
}
}
std::uint32_t MemoryAccess::read_ctl(enum MemoryAccess::AccessControl ctl, std::uint32_t offset) const {
switch (ctl) {
case AC_NONE:
return 0;
case AC_BYTE:
{
std::uint8_t b = this->read_byte(offset);
return (((std::uint32_t)b & 0x80) << 24) | ((std::uint32_t)b & 0x7F); // Sign extend
}
case AC_HALFWORD:
{
std::uint16_t h = this->read_hword(offset);
return (((std::uint32_t)h & 0x8000) << 16) | ((std::uint32_t)h & 0x7FFF); // Sign extend
}
case AC_WORD:
return this->read_word(offset);
case AC_BYTE_UNSIGNED:
return this->read_byte(offset);
case AC_HALFWORD_UNSIGNED:
return this->read_hword(offset);
default:
throw QTMIPS_EXCEPTION(UnknownMemoryControl, "Trying to read from memory with unknown ctl", QString::number(ctl));
}
}
void MemoryAccess::sync() { }
MemorySection::MemorySection(std::uint32_t length) {
this->len = length;
this->dt = new std::uint32_t[length];
memset(this->dt, 0, sizeof *this->dt * length);
}
MemorySection::MemorySection(const MemorySection &ms) : MemorySection(ms.length()) {
memcpy(this->dt, ms.data(), sizeof *this->dt * this->len);
}
MemorySection::~MemorySection() {
delete this->dt;
}
void MemorySection::wword(std::uint32_t offset, std::uint32_t value) {
offset = offset >> 2;
if (offset >= this->len)
throw QTMIPS_EXCEPTION(OutOfMemoryAccess, "Trying to write outside of the memory section", QString("Accessing using offset: ") + QString(offset));
this->dt[offset] = value;
}
std::uint32_t MemorySection::rword(std::uint32_t offset) const {
offset = offset >> 2;
if (offset >= this->len)
throw QTMIPS_EXCEPTION(OutOfMemoryAccess, "Trying to read outside of the memory section", QString("Accessing using offset: ") + QString(offset));
return this->dt[offset];
}
std::uint32_t MemorySection::length() const {
return len;
}
const std::uint32_t* MemorySection::data() const {
return this->dt;
}
bool MemorySection::operator==(const MemorySection &ms) const {
return ! memcmp(this->dt, ms.data(), sizeof *this->dt * this->len);
}
bool MemorySection::operator!=(const MemorySection &ms) const {
return ! this->operator ==(ms);
}
//////////////////////////////////////////////////////////////////////////////
/// Some optimalization options
// How big memory sections will be in bits (2^6=64)
#define MEMORY_SECTION_BITS 6
// How big one row of lookup tree will be in bits (2^4=16)
#define MEMORY_TREE_BITS 4
//////////////////////////////////////////////////////////////////////////////
// Size of one section
#define MEMORY_SECTION_SIZE (1 << MEMORY_SECTION_BITS)
// Size of one memory row
#define MEMORY_TREE_ROW_SIZE (1 << MEMORY_TREE_BITS)
// Depth of tree
#define MEMORY_TREE_DEPTH ((30 - MEMORY_SECTION_BITS) / MEMORY_TREE_BITS)
// Just do some sanity checks
#if (MEMORY_SECTION_SIZE == 0)
#error Nonzero memory section size is required
#endif
#if (MEMORY_TREE_ROW_SIZE == 0)
#error Nonzero memory tree row size is required
#endif
#if (((30 - MEMORY_SECTION_BITS) % MEMORY_TREE_BITS) != 0)
#error Number of bits in tree row has to be exact division of available number of bits
#endif
// Macro to generate mask of given size with given righ offset
#define GENMASK(SIZE, OFF) (((1 << (SIZE)) - 1) << (OFF))
// Get index in row for fiven offset and row number i
#define TREE_ROW_BIT_OFFSET(I) (30 - MEMORY_TREE_BITS - (I)*MEMORY_TREE_BITS)
#define TREE_ROW(OFFSET, I) (((OFFSET) & GENMASK(MEMORY_TREE_BITS, TREE_ROW_BIT_OFFSET(I))) >> TREE_ROW_BIT_OFFSET(I))
Memory::Memory() {
this->mt_root = allocate_section_tree();
}
Memory::Memory(const Memory &m) {
this->mt_root = copy_section_tree(m.get_memorytree_root(), 0);
}
Memory::~Memory() {
free_section_tree(this->mt_root, 0);
}
void Memory::reset() {
free_section_tree(this->mt_root, 0);
this->mt_root = allocate_section_tree();
}
void Memory::reset(const Memory &m) {
free_section_tree(this->mt_root, 0);
this->mt_root = copy_section_tree(m.get_memorytree_root(), 0);
}
MemorySection *Memory::get_section(std::uint32_t address, bool create) const {
union MemoryTree *w = this->mt_root;
size_t row_num;
for (int i = 0; i < (MEMORY_TREE_DEPTH - 1); i++) {
row_num = TREE_ROW(address, i);
if (w[row_num].mt == nullptr) { // We don't have this tree so allocate it
if (!create) // If we shouldn't be creating it than just return null
return nullptr;
w[row_num].mt = allocate_section_tree();
}
w = w[row_num].mt;
}
row_num = TREE_ROW(address, MEMORY_TREE_DEPTH - 1);
if (w[row_num].sec == nullptr) {
if (!create)
return nullptr;
w[row_num].sec = new MemorySection(MEMORY_SECTION_SIZE);
}
return w[row_num].sec;
}
#define SECTION_OFFSET_MASK(ADDR) (ADDR & GENMASK(MEMORY_SECTION_BITS, 2))
void Memory::wword(std::uint32_t address, std::uint32_t value) {
MemorySection *section = this->get_section(address, true);
section->write_word(SECTION_OFFSET_MASK(address), value);
}
std::uint32_t Memory::rword(std::uint32_t address) const {
MemorySection *section = this->get_section(address, false);
if (section == nullptr)
return 0;
else
return section->read_word(SECTION_OFFSET_MASK(address));
}
bool Memory::operator==(const Memory&m) const {
return compare_section_tree(this->mt_root, m.get_memorytree_root(), 0);
}
bool Memory::operator!=(const Memory&m) const {
return ! this->operator ==(m);
}
const union machine::MemoryTree *Memory::get_memorytree_root() const {
return this->mt_root;
}
union machine::MemoryTree *Memory::allocate_section_tree() {
union MemoryTree *mt = new union MemoryTree[MEMORY_TREE_ROW_SIZE];
memset(mt, 0, sizeof *mt * MEMORY_TREE_ROW_SIZE);
return mt;
}
void Memory::free_section_tree(union machine::MemoryTree *mt, size_t depth) {
if (depth < (MEMORY_TREE_DEPTH - 1)) { // Following level is memory tree
for (int i = 0; i < MEMORY_TREE_ROW_SIZE; i++) {
if (mt[i].mt != nullptr)
free_section_tree(mt[i].mt, depth + 1);
}
} else { // Following level is memory section
for (int i = 0; i < MEMORY_TREE_ROW_SIZE; i++) {
if (mt[i].sec != nullptr)
delete mt[i].sec;
}
}
}
bool Memory::compare_section_tree(const union machine::MemoryTree *mt1, const union machine::MemoryTree *mt2, size_t depth) {
if (depth < (MEMORY_TREE_DEPTH - 1)) { // Following level is memory tree
for (int i = 0; i < MEMORY_TREE_ROW_SIZE; i++) {
if (
((mt1[i].mt == nullptr || mt2[i].mt == nullptr) && mt1[i].mt != mt2[i].mt)
||
(mt1[i].mt != nullptr && mt2[i].mt != nullptr && !compare_section_tree(mt1[i].mt, mt2[i].mt, depth + 1))
) {
return false;
}
}
} else { // Following level is memory section
for (int i = 0; i < MEMORY_TREE_ROW_SIZE; i++) {
if (
((mt1[i].sec == nullptr || mt2[i].sec == nullptr) && mt1[i].sec != mt2[i].sec)
||
(mt1[i].sec != nullptr && mt2[i].sec != nullptr && *mt1[i].sec != *mt2[i].sec)
) {
return false;
}
}
}
return true;
}
union machine::MemoryTree *Memory::copy_section_tree(const union machine::MemoryTree *mt, size_t depth) {
union MemoryTree *nmt = allocate_section_tree();
if (depth < (MEMORY_TREE_DEPTH - 1)) { // Following level is memory tree
for (int i = 0; i < MEMORY_TREE_ROW_SIZE; i++) {
if (mt[i].mt != nullptr) {
nmt[i].mt = copy_section_tree(mt[i].mt, depth + 1);
}
}
} else { // Following level is memory section
for (int i = 0; i < MEMORY_TREE_ROW_SIZE; i++) {
if (mt[i].sec != nullptr)
nmt[i].sec = new MemorySection(*mt[i].sec);
}
}
return nmt;
}
|