1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
|
#include "memory.h"
// Note about endianness: Current memory implementation is expected to be a big endian.
// But we can be running on little endian so we should do conversion from bytes to word according that.
void MemoryAccess::write_hword(std::uint32_t offset, std::uint16_t value) {
#if __BYTE_ORDER == __LITTLE_ENDIAN
this->write_byte(offset++, (std::uint8_t)(value >> 8));
this->write_byte(offset, (std::uint8_t)value);
#else
this->write_byte(offset++, (std::uint8_t)value);
this->write_byte(offset, (std::uint8_t)(value >> 8));
#endif
}
void MemoryAccess::write_word(std::uint32_t offset, std::uint32_t value) {
#if __BYTE_ORDER == __LITTLE_ENDIAN
this->write_byte(offset++, (std::uint8_t)(value >> 24));
this->write_byte(offset++, (std::uint8_t)(value >> 16));
this->write_byte(offset++, (std::uint8_t)(value >> 8));
this->write_byte(offset, (std::uint8_t)value);
#else
this->write_byte(offset++, (std::uint8_t)value);
this->write_byte(offset++, (std::uint8_t)(value >> 8));
this->write_byte(offset++, (std::uint8_t)(value >> 16));
this->write_byte(offset, (std::uint8_t)(value >> 24));
#endif
}
std::uint16_t MemoryAccess::read_hword(std::uint32_t offset) {
std::uint16_t dt = 0;
#if __BYTE_ORDER == __LITTLE_ENDIAN
dt |= (this->read_byte(offset++) << 8);
dt |= this->read_byte(offset);
#else
dt |= this->read_byte(offset++);
dt |= (this->read_byte(offset) << 8);
#endif
return dt;
}
std::uint32_t MemoryAccess::read_word(std::uint32_t offset) {
std::uint32_t dt = 0;
#if __BYTE_ORDER == __LITTLE_ENDIAN
dt |= (this->read_byte(offset++) << 24);
dt |= (this->read_byte(offset++) << 16);
dt |= (this->read_byte(offset++) << 8);
dt |= this->read_byte(offset);
#else
dt |= this->read_byte(offset++);
dt |= (this->read_byte(offset++) << 8);
dt |= (this->read_byte(offset++) << 16);
dt |= (this->read_byte(offset) << 24);
#endif
return dt;
}
void MemoryAccess::write_ctl(enum MemoryAccess::AccessControl ctl, std::uint32_t offset, std::uint32_t value) {
switch (ctl) {
case AC_BYTE:
case AC_BYTE_UNSIGNED:
this->write_byte(offset, value);
break;
case AC_HALFWORD:
case AC_HALFWORD_UNSIGNED:
this->write_hword(offset, value);
break;
case AC_WORD:
this->write_word(offset, value);
break;
default:
throw QTMIPS_EXCEPTION(UnknownMemoryControl, "Trying to write to memory with unknown ctl", QString::number(ctl));
}
}
std::uint32_t MemoryAccess::read_ctl(enum MemoryAccess::AccessControl ctl, std::uint32_t offset) {
switch (ctl) {
case AC_BYTE:
{
std::uint8_t b = this->read_byte(offset);
return ((b & 0x80) << 24) | (b & 0x7F); // Sign extend
}
case AC_HALFWORD:
{
std::uint16_t h = this->read_hword(offset);
return ((h & 0x8000) << 16) | (h & 0x7FFF); // Sign extend
}
case AC_WORD:
return this->read_word(offset);
case AC_BYTE_UNSIGNED:
return this->read_byte(offset);
case AC_HALFWORD_UNSIGNED:
return this->read_hword(offset);
default:
throw QTMIPS_EXCEPTION(UnknownMemoryControl, "Trying to read from memory with unknown ctl", QString::number(ctl));
}
}
MemorySection::MemorySection(std::uint32_t length) {
this->len = length;
this->dt = new std::uint8_t[length];
memset(this->dt, 0, sizeof *this->dt * length);
}
MemorySection::MemorySection(const MemorySection &ms) : MemorySection(ms.length()) {
memcpy(this->dt, ms.data(), sizeof *this->dt * this->len);
}
MemorySection::~MemorySection() {
delete this->dt;
}
void MemorySection::write_byte(std::uint32_t offset, std::uint8_t value) {
if (offset >= this->len)
throw QTMIPS_EXCEPTION(OutOfMemoryAccess, "Trying to write outside of the memory section", QString("Accessing using offset: ") + QString(offset));
this->dt[offset] = value;
}
std::uint8_t MemorySection::read_byte(std::uint32_t offset) const {
if (offset >= this->len)
throw QTMIPS_EXCEPTION(OutOfMemoryAccess, "Trying to read outside of the memory section", QString("Accessing using offset: ") + QString(offset));
return this->dt[offset];
}
std::uint32_t MemorySection::length() const {
return len;
}
const std::uint8_t* MemorySection::data() const {
return this->dt;
}
bool MemorySection::operator==(const MemorySection &ms) const {
return ! memcmp(this->dt, ms.data(), sizeof *this->dt * this->len);
}
bool MemorySection::operator!=(const MemorySection &ms) const {
return ! this->operator ==(ms);
}
// Number of bites per row on lookup tree
#define MEMORY_TREE_ROW ((32 - MEMORY_SECTION_BITS) / MEMORY_TREE_H)
// Size of row in memory lookup tree
#define MEMORY_TREE_LEN (1 << MEMORY_TREE_ROW)
// Just do some sanity checks
#if (MEMORY_TREE_LEN == 0)
#error Nonzero memory tree row size
#endif
#if (((32 - MEMORY_SECTION_BITS) % MEMORY_TREE_H) != 0)
#error Memory tree is not fully divisible by memory tree height
#endif
#if (MEMORY_TREE_H < 2)
#error Memory tree have to be higher or in limit equal to two
#endif
union MemoryTree {
union MemoryTree *mt;
MemorySection *sec;
};
Memory::Memory() {
this->mt_root = allocate_section_tree();
}
Memory::Memory(const Memory &m) {
this->mt_root = copy_section_tree(m.get_memorytree_root(), 0);
}
Memory::~Memory() {
free_section_tree(this->mt_root, 0);
}
// Create address mask with section length
#define ADDRESS_MASK(LEN) ((1 << LEN) - 1)
// Get index in tree node from address, length of row and tree depth
// ADDR is expected to be and address with lowest bites removed (MEMORY_SECTION_BITS)
#define ADDRESS_TREE_INDEX(DEPTH, ADDR) ((ADDR >> (DEPTH * MEMORY_TREE_ROW)) & ADDRESS_MASK(MEMORY_TREE_ROW))
MemorySection *Memory::get_section(std::uint32_t address, bool create) const {
std::uint32_t addr = address >> MEMORY_SECTION_BITS; // drop all bits for addressing inside of the section
union MemoryTree *w = this->mt_root;
size_t ii;
for (int i = 0; i < (MEMORY_TREE_H - 1); i++) {
ii = ADDRESS_TREE_INDEX(i, addr);
if (w[ii].mt == nullptr) { // We don't have this tree so allocate it
if (!create) // If we shouldn't be creating it than just return null
return nullptr;
w[ii].mt = allocate_section_tree();
}
w = w[ii].mt;
}
// Now expand last level
ii = ADDRESS_TREE_INDEX((MEMORY_TREE_H - 1), addr);
if (w[ii].sec == nullptr) {
if (!create)
return nullptr;
w[ii].sec = new MemorySection(1 << MEMORY_SECTION_BITS);
}
return w[ii].sec;
}
// Note about this address magic: we want to mask upper bits in address as those were used
// for section lookup. We do it using (2^BITS - 1).
#define SECTION_ADDRESS(ADDR) (ADDR & ADDRESS_MASK(MEMORY_SECTION_BITS))
void Memory::write_byte(std::uint32_t address, std::uint8_t value) {
MemorySection *section = this->get_section(address, true);
section->write_byte(SECTION_ADDRESS(address), value);
}
std::uint8_t Memory::read_byte(std::uint32_t address) const {
MemorySection *section = this->get_section(address, false);
if (section == nullptr)
return 0;
else
return section->read_byte(SECTION_ADDRESS(address));
}
bool Memory::operator==(const Memory&m) const {
return compare_section_tree(this->mt_root, m.get_memorytree_root(), 0);
}
bool Memory::operator!=(const Memory&m) const {
return ! this->operator ==(m);
}
const union MemoryTree *Memory::get_memorytree_root() const {
return this->mt_root;
}
union MemoryTree *Memory::allocate_section_tree() {
union MemoryTree *mt = new union MemoryTree[MEMORY_TREE_LEN];
for (size_t i = 0; i < MEMORY_TREE_LEN; i++)
// Note that this also nulls sec pointer as those are both pointers and so they have same size
mt[i].mt = nullptr;
return mt;
}
void Memory::free_section_tree(union MemoryTree *mt, size_t depth) {
if (depth < (MEMORY_TREE_H - 1)) { // Following level is memory tree
for (int i = 0; i < MEMORY_TREE_LEN; i++) {
if (mt[i].mt != nullptr)
free_section_tree(mt[i].mt, depth + 1);
}
} else { // Following level is memory section
for (int i = 0; i < MEMORY_TREE_LEN; i++) {
if (mt[i].sec != nullptr)
delete mt[i].sec;
}
}
}
bool Memory::compare_section_tree(const union MemoryTree *mt1, const union MemoryTree *mt2, size_t depth) {
if (depth < (MEMORY_TREE_H - 1)) { // Following level is memory tree
for (int i = 0; i < MEMORY_TREE_LEN; i++) {
if (
((mt1[i].mt == nullptr || mt2[i].mt == nullptr) && mt1[i].mt != mt2[i].mt)
||
(mt1[i].mt != nullptr && mt2[i].mt != nullptr && !compare_section_tree(mt1[i].mt, mt2[i].mt, depth + 1))
) {
return false;
}
}
} else { // Following level is memory section
for (int i = 0; i < MEMORY_TREE_LEN; i++) {
if (
((mt1[i].sec == nullptr || mt2[i].sec == nullptr) && mt1[i].sec != mt2[i].sec)
||
(mt1[i].sec != nullptr && mt2[i].sec != nullptr && *mt1[i].sec != *mt2[i].sec)
) {
return false;
}
}
}
return true;
}
union MemoryTree *Memory::copy_section_tree(const union MemoryTree *mt, size_t depth) {
union MemoryTree *nmt = allocate_section_tree();
if (depth < (MEMORY_TREE_H - 1)) { // Following level is memory tree
for (int i = 0; i < MEMORY_TREE_LEN; i++) {
if (mt[i].mt != nullptr) {
nmt[i].mt = copy_section_tree(mt[i].mt, depth + 1);
}
}
} else { // Following level is memory section
for (int i = 0; i < MEMORY_TREE_LEN; i++) {
if (mt[i].sec != nullptr)
nmt[i].sec = new MemorySection(*mt[i].sec);
}
}
return nmt;
}
|