1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
|
#include "core.h"
#include "programloader.h"
#define DM_SUPPORTED (1L<<0)
#define DM_MEM2REG (1L<<1)
#define DM_MEMWRITE (1L<<2)
#define DM_ALUSRC (1L<<3)
#define DM_REGD (1L<<4)
#define DM_REGWRITE (1L<<5)
struct DecodeMap {
long flags;
enum AluOp alu;
};
// This is temporally operation place holder
#define NOALU .alu = ALU_OP_SLL
#define NOPE { .flags = 0, NOALU }
#define FLAGS_ALU_I (DM_SUPPORTED | DM_ALUSRC | DM_REGWRITE)
// This is map from opcode to signals.
static const struct DecodeMap dmap[] = {
{ .flags = DM_SUPPORTED | DM_REGD | DM_REGWRITE, NOALU }, // Alu operations (aluop is decoded from function explicitly)
{ .flags = DM_SUPPORTED, NOALU }, // REGIMM (BLTZ, BGEZ, )
{ .flags = DM_SUPPORTED, NOALU }, // J
NOPE, // JAL
{ .flags = DM_SUPPORTED, NOALU }, // BEQ
{ .flags = DM_SUPPORTED, NOALU }, // BNE
{ .flags = DM_SUPPORTED, NOALU }, // BLEZ
{ .flags = DM_SUPPORTED, NOALU }, // BGTZ
{ .flags = FLAGS_ALU_I, .alu = ALU_OP_ADD }, // ADDI
{ .flags = FLAGS_ALU_I, .alu = ALU_OP_ADDU }, // ADDIU
{ .flags = FLAGS_ALU_I, .alu = ALU_OP_SLT }, // SLTI
{ .flags = FLAGS_ALU_I, .alu = ALU_OP_SLTU }, // SLTIU
{ .flags = FLAGS_ALU_I, .alu = ALU_OP_AND }, // ANDI
{ .flags = FLAGS_ALU_I, .alu = ALU_OP_OR }, // ORI
{ .flags = FLAGS_ALU_I, .alu = ALU_OP_XOR }, // XORI
NOPE, // LUI
NOPE, // 16
NOPE, // 17
NOPE, // 18
NOPE, // 19
NOPE, // 20
NOPE, // 21
NOPE, // 22
NOPE, // 23
NOPE, // 24
NOPE, // 25
NOPE, // 26
NOPE, // 27
NOPE, // 28
NOPE, // 29
NOPE, // 30
NOPE, // 31
NOPE, // LB
NOPE, // LH
NOPE, // LWL
NOPE, // LW
NOPE, // LBU
NOPE, // LHU
NOPE, // LWR
NOPE, // 39
NOPE, // SB
NOPE, // SH
NOPE, // SWL
NOPE, // SW
NOPE, // 44
NOPE, // 45
NOPE, // SWR
NOPE, // 47
NOPE, // 48
NOPE, // 49
NOPE, // 50
NOPE, // 51
NOPE, // 52
NOPE, // 53
NOPE, // 54
NOPE, // 55
NOPE, // 56
NOPE, // 57
NOPE, // 58
NOPE, // 59
NOPE, // 60
NOPE, // 61
NOPE, // 62
NOPE // 63
};
Core::Core(Registers *regs, MemoryAccess *mem) {
this->regs = regs;
this->mem = mem;
}
struct Core::dtFetch Core::fetch() {
// TODO signals
Instruction inst(mem->read_word(regs->read_pc()));
return {
.inst = inst
};
}
struct Core::dtDecode Core::decode(struct dtFetch dt) {
struct DecodeMap dec = dmap[dt.inst.opcode()];
if (!(dec.flags & DM_SUPPORTED))
// TODO message
throw QTMIPS_EXCEPTION(UnsupportedInstruction, "", "");
// TODO solve forwarding somehow in here
std::uint32_t rs = regs->read_gp(dt.inst.rs());
std::uint32_t rt = regs->read_gp(dt.inst.rt());
return {
.inst = dt.inst,
.mem2reg = dec.flags & DM_MEM2REG,
.memwrite = dec.flags & DM_MEMWRITE,
.alusrc = dec.flags & DM_ALUSRC,
.regd = dec.flags & DM_REGD,
.regwrite = dec.flags & DM_REGWRITE,
.aluop = dt.inst.opcode() == 0 ? (enum AluOp)dt.inst.funct() : dec.alu,
.val_rs = rs,
.val_rt = rt,
};
// TODO on jump there should be delay slot. Does processor addes it or compiler. And do we care?
}
struct Core::dtExecute Core::execute(struct dtDecode dt) {
// TODO signals
// Handle conditional move (we have to change regwrite signal if conditional is not met)
// TODO can't we do this some cleaner way?
bool regwrite = dt.regwrite;
if (dt.inst.opcode() == 0 && ((dt.inst.funct() == 10 && dt.val_rt != 0) || (dt.inst.funct() == 11 && dt.val_rt == 0)))
regwrite = false;
std::uint32_t alu_sec = dt.val_rt;
if (dt.alusrc)
alu_sec = ((dt.inst.immediate() & 0x8000) << 16) | (dt.inst.immediate() & 0x7FFF); // Sign extend to 32bit
return {
.regwrite = regwrite,
.rwrite = dt.regd ? dt.inst.rd() : dt.inst.rt(),
.alu_val = alu_operate(dt.aluop, dt.val_rs, alu_sec, dt.inst.shamt(), regs),
};
}
struct Core::dtMemory Core::memory(struct dtExecute dt) {
// TODO signals
return {
.regwrite = dt.regwrite,
.rwrite = dt.rwrite,
.alu_val = dt.alu_val,
};
}
void Core::writeback(struct dtMemory dt) {
if (dt.regwrite) {
regs->write_gp(dt.rwrite, dt.alu_val);
}
}
void Core::handle_pc(struct dtDecode dt) {
// TODO signals
bool branch = false;
bool link = false;
// TODO implement link
switch (dt.inst.opcode()) {
case 0: // JR (JALR)
if (dt.inst.funct() == ALU_OP_JR || dt.inst.funct() == ALU_OP_JALR) {
regs->pc_abs_jmp(dt.val_rs);
return;
}
break;
case 1: // REGIMM instruction
//switch (dt.inst.rt() & 0xF) { // Should be used when linking is supported
switch (dt.inst.rt()) {
case 0: // BLTZ(AL)
branch = (std::int32_t)dt.val_rs < 0;
break;
case 1: // BGEZ(AL)
branch = (std::int32_t)dt.val_rs >= 0;
break;
default:
throw QTMIPS_EXCEPTION(UnsupportedInstruction, "REGIMM instruction with unknown rt code", QString::number(dt.inst.rt(), 16));
}
link = dt.inst.rs() & 0x10;
break;
case 2: // J
case 3: // JAL
regs->pc_abs_jmp_28(dt.inst.address() << 2);
return;
case 4: // BEQ
branch = dt.val_rs == dt.val_rt;
break;
case 5: // BNE
branch = dt.val_rs != dt.val_rt;
break;
case 6: // BLEZ
branch = (std::int32_t)dt.val_rs <= 0;
break;
case 7: // BGTZ
branch = (std::int32_t)dt.val_rs > 0;
break;
}
if (branch)
regs->pc_jmp((std::int32_t)(((dt.inst.immediate() & 0x7fff) << 2) | ((dt.inst.immediate() & 0x8000) << 16)));
else
regs->pc_inc();
}
void Core::dtFetchInit(struct dtFetch &dt) {
dt.inst = Instruction(0x00);
}
void Core::dtDecodeInit(struct dtDecode &dt) {
dt.inst = Instruction(0x00);
dt.mem2reg = false;
dt.memwrite = false;
dt.alusrc = false;
dt.regd = false;
dt.regwrite = false;
dt.aluop = ALU_OP_SLL;
dt.val_rs = 0;
dt.val_rt = 0;
}
void Core::dtExecuteInit(struct dtExecute &dt) {
dt.regwrite = false;
dt.rwrite = false;
dt.alu_val = 0;
}
void Core::dtMemoryInit(struct dtMemory &dt) {
dt.regwrite = false;
dt.rwrite = false;
dt.alu_val = 0;
}
CoreSingle::CoreSingle(Registers *regs, MemoryAccess *mem) : \
Core(regs, mem) {
dtDecodeInit(jmp_delay_decode);
}
void CoreSingle::step() {
struct dtFetch f = fetch();
struct dtDecode d = decode(f);
struct dtExecute e = execute(d);
struct dtMemory m = memory(e);
writeback(m);
handle_pc(jmp_delay_decode);
jmp_delay_decode = d; // Copy current decode
}
CorePipelined::CorePipelined(Registers *regs, MemoryAccess *mem) : \
Core(regs, mem) {
dtFetchInit(dt_f);
dtDecodeInit(dt_d);
dtExecuteInit(dt_e);
dtMemoryInit(dt_m);
}
void CorePipelined::step() {
// TODO implement pipelined
writeback(dt_m);
dt_m =memory(dt_e);
dt_e = execute(dt_d);
dt_d = decode(dt_f);
dt_f = fetch();
handle_pc(dt_d);
}
|