1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
|
// SPDX-License-Identifier: GPL-2.0+
/*******************************************************************************
* QtMips - MIPS 32-bit Architecture Subset Simulator
*
* Implemented to support following courses:
*
* B35APO - Computer Architectures
* https://cw.fel.cvut.cz/wiki/courses/b35apo
*
* B4M35PAP - Advanced Computer Architectures
* https://cw.fel.cvut.cz/wiki/courses/b4m35pap/start
*
* Copyright (c) 2017-2019 Karel Koci<cynerd@email.cz>
* Copyright (c) 2019 Pavel Pisa <pisa@cmp.felk.cvut.cz>
*
* Faculty of Electrical Engineering (http://www.fel.cvut.cz)
* Czech Technical University (http://www.cvut.cz/)
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*
******************************************************************************/
#include "core.h"
#include "programloader.h"
#include "utils.h"
using namespace machine;
Core::Core(Registers *regs, MemoryAccess *mem_program, MemoryAccess *mem_data,
unsigned int min_cache_row_size) : ex_handlers(), hw_breaks() {
cycle_c = 0;
this->regs = regs;
this->mem_program = mem_program;
this->mem_data = mem_data;
this->ex_default_handler = new StopExceptionHandler();
this->min_cache_row_size = min_cache_row_size;
this->hwr_userlocal = 0xe0000000;
}
void Core::step(bool skip_break) {
cycle_c++;
do_step(skip_break);
}
void Core::reset() {
cycle_c = 0;
do_reset();
}
unsigned Core::cycles() {
return cycle_c;
}
Registers *Core::get_regs() {
return regs;
}
MemoryAccess *Core::get_mem_data() {
return mem_data;
}
MemoryAccess *Core::get_mem_program() {
return mem_program;
}
Core::hwBreak::hwBreak(std::uint32_t addr) {
this->addr = addr;
flags = 0;
count = 0;
}
void Core::insert_hwbreak(std::uint32_t address) {
hw_breaks.insert(address, new hwBreak(address));
}
void Core::remove_hwbreak(std::uint32_t address) {
hwBreak* hwbrk = hw_breaks.take(address);
if (hwbrk != nullptr)
delete hwbrk;
}
bool Core::is_hwbreak(std::uint32_t address) {
hwBreak* hwbrk = hw_breaks.value(address);
return hwbrk != nullptr;
}
void Core::register_exception_handler(ExceptionCause excause, ExceptionHandler *exhandler)
{
if (excause == EXCAUSE_NONE ) {
if (ex_default_handler != nullptr)
delete ex_default_handler;
ex_default_handler = exhandler;
} else {
ExceptionHandler *old = ex_handlers.take(excause);
delete old;
ex_handlers.insert(excause, exhandler);
}
}
bool Core::handle_exception(Core *core, Registers *regs, ExceptionCause excause,
std::uint32_t inst_addr, std::uint32_t next_addr,
std::uint32_t jump_branch_pc, bool in_delay_slot,
std::uint32_t mem_ref_addr)
{
if (excause == EXCAUSE_HWBREAK) {
if (in_delay_slot)
regs->pc_abs_jmp(jump_branch_pc);
else
regs->pc_abs_jmp(inst_addr);
}
ExceptionHandler *exhandler = ex_handlers.value(excause);
if (exhandler != nullptr)
return exhandler->handle_exception(core, regs, excause, inst_addr,
next_addr, jump_branch_pc, in_delay_slot,
mem_ref_addr);
if (ex_default_handler != nullptr)
return ex_default_handler->handle_exception(core, regs, excause, inst_addr,
next_addr, jump_branch_pc, in_delay_slot,
mem_ref_addr);
return false;
}
void Core::set_c0_userlocal(std::uint32_t address) {
hwr_userlocal = address;
}
struct Core::dtFetch Core::fetch(bool skip_break) {
enum ExceptionCause excause = EXCAUSE_NONE;
std::uint32_t inst_addr = regs->read_pc();
Instruction inst(mem_program->read_word(inst_addr));
if (!skip_break) {
hwBreak *brk = hw_breaks.value(inst_addr);
if (brk != nullptr) {
excause = EXCAUSE_HWBREAK;
}
}
emit fetch_inst_addr_value(inst_addr);
emit instruction_fetched(inst, inst_addr, excause);
return {
.inst = inst,
.inst_addr = inst_addr,
.excause = excause,
.in_delay_slot = false,
};
}
struct Core::dtDecode Core::decode(const struct dtFetch &dt) {
uint8_t rwrite;
enum InstructionFlags flags;
enum AluOp alu_op;
enum AccessControl mem_ctl;
enum ExceptionCause excause = dt.excause;
dt.inst.flags_alu_op_mem_ctl(flags, alu_op, mem_ctl);
if (!(flags & IMF_SUPPORTED))
throw QTMIPS_EXCEPTION(UnsupportedInstruction, "Instruction with following opcode is not supported", QString::number(dt.inst.opcode(), 16));
std::uint32_t val_rs = regs->read_gp(dt.inst.rs());
std::uint32_t val_rt = regs->read_gp(dt.inst.rt());
std::uint32_t immediate_val;
bool regwrite = flags & IMF_REGWRITE;
bool regd = flags & IMF_REGD;
bool regd31 = flags & IMF_PC_TO_R31;
// requires rs for beq, bne, blez, bgtz, jr nad jalr
bool bjr_req_rs = flags & IMF_BJR_REQ_RS;
if (flags & IMF_PC8_TO_RT)
val_rt = dt.inst_addr + 8;
// requires rt for beq, bne
bool bjr_req_rt = flags & IMF_BJR_REQ_RT;
if (flags & IMF_ZERO_EXTEND)
immediate_val = dt.inst.immediate();
else
immediate_val = sign_extend(dt.inst.immediate());
if ((flags & IMF_EXCEPTION) && (excause == EXCAUSE_NONE)) {
excause = dt.inst.encoded_exception();
}
emit decode_inst_addr_value(dt.inst_addr);
emit instruction_decoded(dt.inst, dt.inst_addr, excause);
emit decode_instruction_value(dt.inst.data());
emit decode_reg1_value(val_rs);
emit decode_reg2_value(val_rt);
emit decode_immediate_value(immediate_val);
emit decode_regw_value((bool)(flags & IMF_REGWRITE));
emit decode_memtoreg_value((bool)(flags & IMF_MEMREAD));
emit decode_memwrite_value((bool)(flags & IMF_MEMWRITE));
emit decode_memread_value((bool)(flags & IMF_MEMREAD));
emit decode_alusrc_value((bool)(flags & IMF_ALUSRC));
emit decode_regdest_value((bool)(flags & IMF_REGD));
emit decode_rs_num_value(dt.inst.rs());
emit decode_rt_num_value(dt.inst.rt());
emit decode_rd_num_value(dt.inst.rd());
emit decode_regd31_value(regd31);
if (regd31) {
val_rt = dt.inst_addr + 8;
}
rwrite = regd31 ? 31: regd ? dt.inst.rd() : dt.inst.rt();
return {
.inst = dt.inst,
.memread = !!(flags & IMF_MEMREAD),
.memwrite = !!(flags & IMF_MEMWRITE),
.alusrc = !!(flags & IMF_ALUSRC),
.regd = regd,
.regd31 = regd31,
.regwrite = regwrite,
.alu_req_rs = !!(flags & IMF_ALU_REQ_RS),
.alu_req_rt = !!(flags & IMF_ALU_REQ_RT),
.bjr_req_rs = bjr_req_rs,
.bjr_req_rt = bjr_req_rt,
.branch = !!(flags & IMF_BRANCH),
.jump = !!(flags & IMF_JUMP),
.bj_not = !!(flags & IMF_BJ_NOT),
.bgt_blez = !!(flags & IMF_BGTZ_BLEZ),
.nb_skip_ds = !!(flags & IMF_NB_SKIP_DS),
.forward_m_d_rs = false,
.forward_m_d_rt = false,
.aluop = alu_op,
.memctl = mem_ctl,
.val_rs = val_rs,
.val_rt = val_rt,
.immediate_val = immediate_val,
.rwrite = rwrite,
.ff_rs = FORWARD_NONE,
.ff_rt = FORWARD_NONE,
.inst_addr = dt.inst_addr,
.excause = excause,
.in_delay_slot = dt.in_delay_slot,
};
}
struct Core::dtExecute Core::execute(const struct dtDecode &dt) {
bool discard;
// Handle conditional move (we have to change regwrite signal if conditional is not met)
bool regwrite = dt.regwrite;
std::uint32_t alu_sec = dt.val_rt;
if (dt.alusrc)
alu_sec = dt.immediate_val; // Sign or zero extend immediate value
std::uint32_t alu_val = alu_operate(dt.aluop, dt.val_rs, alu_sec, dt.inst.shamt(), regs, discard);
if (discard)
regwrite = false;
if (dt.aluop == ALU_OP_RDHWR) {
switch (dt.inst.rd()) {
case 0: // CPUNum
alu_val = 0;
break;
case 1: // SYNCI_Step
alu_val = min_cache_row_size;
break;
case 2: // CC
alu_val = cycle_c;
break;
case 3: // CCRes
alu_val = 1;
break;
case 29: // UserLocal
alu_val = hwr_userlocal;
break;
default:
alu_val = 0;
}
}
emit execute_inst_addr_value(dt.inst_addr);
emit instruction_executed(dt.inst, dt.inst_addr, dt.excause);
emit execute_alu_value(alu_val);
emit execute_reg1_value(dt.val_rs);
emit execute_reg2_value(dt.val_rt);
emit execute_reg1_ff_value(dt.ff_rs);
emit execute_reg2_ff_value(dt.ff_rt);
emit execute_immediate_value(dt.immediate_val);
emit execute_regw_value(dt.regwrite);
emit execute_memtoreg_value(dt.memread);
emit execute_memread_value(dt.memread);
emit execute_memwrite_value(dt.memwrite);
emit execute_alusrc_value(dt.alusrc);
emit execute_regdest_value(dt.regd);
emit execute_regw_num_value(dt.rwrite);
return {
.inst = dt.inst,
.memread = dt.memread,
.memwrite = dt.memwrite,
.regwrite = regwrite,
.memctl = dt.memctl,
.val_rt = dt.val_rt,
.rwrite = dt.rwrite,
.alu_val = alu_val,
.inst_addr = dt.inst_addr,
.excause = dt.excause,
.in_delay_slot = dt.in_delay_slot,
};
}
struct Core::dtMemory Core::memory(const struct dtExecute &dt) {
std::uint32_t towrite_val = dt.alu_val;
std::uint32_t mem_addr = dt.alu_val;
bool memread = dt.memread;
bool memwrite = dt.memwrite;
bool regwrite = dt.regwrite;
if (dt.excause != EXCAUSE_NONE) {
memread = false;
memwrite = false;
regwrite = false;
} else {
if (dt.memctl == AC_CACHE_OP) {
mem_data->sync();
mem_program->sync();
} else if (memwrite) {
if (dt.memctl == AC_STORE_CONDITIONAL) {
mem_data->write_ctl(AC_WORD, mem_addr, dt.val_rt);
towrite_val = 1;
} else {
mem_data->write_ctl(dt.memctl, mem_addr, dt.val_rt);
}
} else if (memread) {
if (dt.memctl == AC_LOAD_LINKED)
towrite_val = mem_data->read_ctl(AC_WORD, mem_addr);
else
towrite_val = mem_data->read_ctl(dt.memctl, mem_addr);
}
}
emit memory_inst_addr_value(dt.inst_addr);
emit instruction_memory(dt.inst, dt.inst_addr, dt.excause);
emit memory_alu_value(dt.alu_val);
emit memory_rt_value(dt.val_rt);
emit memory_mem_value(memread ? towrite_val : 0);
emit memory_regw_value(regwrite);
emit memory_memtoreg_value(dt.memread);
emit memory_memread_value(dt.memread);
emit memory_memwrite_value(memwrite);
emit memory_regw_num_value(dt.rwrite);
return {
.inst = dt.inst,
.regwrite = regwrite,
.rwrite = dt.rwrite,
.towrite_val = towrite_val,
.mem_addr = mem_addr,
.inst_addr = dt.inst_addr,
.excause = dt.excause,
.in_delay_slot = dt.in_delay_slot,
};
}
void Core::writeback(const struct dtMemory &dt) {
emit writeback_inst_addr_value(dt.inst_addr);
emit instruction_writeback(dt.inst, dt.inst_addr, dt.excause);
emit writeback_value(dt.towrite_val);
emit writeback_regw_value(dt.regwrite);
emit writeback_regw_num_value(dt.rwrite);
if (dt.regwrite)
regs->write_gp(dt.rwrite, dt.towrite_val);
}
bool Core::handle_pc(const struct dtDecode &dt) {
bool branch = false;
emit instruction_program_counter(dt.inst, dt.inst_addr, EXCAUSE_NONE);
if (dt.jump) {
if (!dt.bjr_req_rs) {
regs->pc_abs_jmp_28(dt.inst.address() << 2);
emit fetch_jump_value(true);
emit fetch_jump_reg_value(false);
} else {
regs->pc_abs_jmp(dt.val_rs);
emit fetch_jump_value(false);
emit fetch_jump_reg_value(true);
}
emit fetch_branch_value(false);
return true;
}
if (dt.branch) {
if (dt.bjr_req_rt) {
branch = dt.val_rs == dt.val_rt;
} else if (!dt.bgt_blez) {
branch = (std::int32_t)dt.val_rs < 0;
} else {
branch = (std::int32_t)dt.val_rs <= 0;
}
if (dt.bj_not)
branch = !branch;
}
emit fetch_jump_value(false);
emit fetch_jump_reg_value(false);
emit fetch_branch_value(branch);
if (branch)
regs->pc_jmp((std::int32_t)(((dt.inst.immediate() & 0x8000) ? 0xFFFF0000 : 0) | (dt.inst.immediate() << 2)));
else
regs->pc_inc();
return branch;
}
void Core::dtFetchInit(struct dtFetch &dt) {
dt.inst = Instruction(0x00);
dt.excause = EXCAUSE_NONE;
dt.in_delay_slot = false;
}
void Core::dtDecodeInit(struct dtDecode &dt) {
dt.inst = Instruction(0x00);
dt.memread = false;
dt.memwrite = false;
dt.alusrc = false;
dt.regd = false;
dt.regwrite = false;
dt.bjr_req_rs = false; // requires rs for beq, bne, blez, bgtz, jr nad jalr
dt.bjr_req_rt = false; // requires rt for beq, bne
dt.jump = false;
dt.bj_not = false;
dt.bgt_blez = false;
dt.nb_skip_ds = false;
dt.forward_m_d_rs = false;
dt.forward_m_d_rt = false;
dt.aluop = ALU_OP_SLL;
dt.memctl = AC_NONE;
dt.val_rs = 0;
dt.val_rt = 0;
dt.rwrite = 0;
dt.immediate_val = 0;
dt.ff_rs = FORWARD_NONE;
dt.ff_rt = FORWARD_NONE;
dt.excause = EXCAUSE_NONE;
dt.in_delay_slot = false;
}
void Core::dtExecuteInit(struct dtExecute &dt) {
dt.inst = Instruction(0x00);
dt.memread = false;
dt.memwrite = false;
dt.regwrite = false;
dt.memctl = AC_NONE;
dt.val_rt = 0;
dt.rwrite = 0;
dt.alu_val = 0;
dt.excause = EXCAUSE_NONE;
dt.in_delay_slot = false;
}
void Core::dtMemoryInit(struct dtMemory &dt) {
dt.inst = Instruction(0x00);
dt.regwrite = false;
dt.rwrite = false;
dt.towrite_val = 0;
dt.mem_addr = 0;
dt.excause = EXCAUSE_NONE;
dt.in_delay_slot = false;
}
CoreSingle::CoreSingle(Registers *regs, MemoryAccess *mem_program, MemoryAccess *mem_data, bool jmp_delay_slot) : \
Core(regs, mem_program, mem_data) {
if (jmp_delay_slot)
jmp_delay_decode = new struct Core::dtDecode();
else
jmp_delay_decode = nullptr;
reset();
}
CoreSingle::~CoreSingle() {
if (jmp_delay_decode != nullptr)
delete jmp_delay_decode;
}
void CoreSingle::do_step(bool skip_break) {
bool in_delay_slot = false;
std::uint32_t jump_branch_pc;
struct dtFetch f = fetch(skip_break);
struct dtDecode d = decode(f);
// Handle PC before instruction following jump leaves decode stage
if (jmp_delay_decode != nullptr) {
in_delay_slot = handle_pc(*jmp_delay_decode);
if (jmp_delay_decode->nb_skip_ds && !in_delay_slot) {
// Discard processing of instruction in delay slot
// for BEQL, BNEL, BLEZL, BGTZL, BLTZL, BGEZL, BLTZALL, BGEZALL
dtDecodeInit(d);
}
jump_branch_pc = jmp_delay_decode->inst_addr;
*jmp_delay_decode = d; // Copy current decode
} else {
handle_pc(d);
jump_branch_pc = d.inst_addr;
}
struct dtExecute e = execute(d);
struct dtMemory m = memory(e);
writeback(m);
if (m.excause != EXCAUSE_NONE) {
if (jmp_delay_decode != nullptr)
dtDecodeInit(*jmp_delay_decode);
handle_exception(this, regs, m.excause, m.inst_addr, regs->read_pc(),
jump_branch_pc, in_delay_slot, m.mem_addr);
return;
}
}
void CoreSingle::do_reset() {
if (jmp_delay_decode != nullptr) {
Core::dtDecodeInit(*jmp_delay_decode);
jmp_delay_decode->inst_addr = 0;
}
}
CorePipelined::CorePipelined(Registers *regs, MemoryAccess *mem_program, MemoryAccess *mem_data, enum MachineConfig::HazardUnit hazard_unit) : \
Core(regs, mem_program, mem_data) {
this->hazard_unit = hazard_unit;
reset();
}
void CorePipelined::do_step(bool skip_break) {
bool stall = false;
bool excpt_in_progress = false;
std::uint32_t jump_branch_pc = dt_m.inst_addr;
// Process stages
writeback(dt_m);
dt_m = memory(dt_e);
dt_e = execute(dt_d);
dt_d = decode(dt_f);
// Resolve exceptions
excpt_in_progress = dt_m.excause != EXCAUSE_NONE;
if (excpt_in_progress) {
dtExecuteInit(dt_e);
emit instruction_executed(dt_e.inst, dt_e.inst_addr, dt_e.excause);
}
excpt_in_progress = excpt_in_progress || dt_e.excause != EXCAUSE_NONE;
if (excpt_in_progress) {
dtDecodeInit(dt_d);
emit instruction_decoded(dt_d.inst, dt_d.inst_addr, dt_d.excause);
}
excpt_in_progress = excpt_in_progress || dt_e.excause != EXCAUSE_NONE;
if (excpt_in_progress) {
dtFetchInit(dt_f);
emit instruction_fetched(dt_f.inst, dt_f.inst_addr, dt_f.excause);
if (dt_m.excause != EXCAUSE_NONE) {
regs->pc_abs_jmp(dt_e.inst_addr);
handle_exception(this, regs, dt_m.excause, dt_m.inst_addr,
dt_e.inst_addr, jump_branch_pc,
dt_m.in_delay_slot, dt_m.mem_addr);
}
return;
}
dt_d.ff_rs = FORWARD_NONE;
dt_d.ff_rt = FORWARD_NONE;
if (hazard_unit != MachineConfig::HU_NONE) {
// Note: We make exception with $0 as that has no effect when written and is used in nop instruction
#define HAZARD(STAGE) ( \
(STAGE).regwrite && (STAGE).rwrite != 0 && \
((dt_d.alu_req_rs && (STAGE).rwrite == dt_d.inst.rs()) || \
(dt_d.alu_req_rt && (STAGE).rwrite == dt_d.inst.rt())) \
) // Note: We make exception with $0 as that has no effect and is used in nop instruction
// Write back stage combinatoricly propagates written instruction to decode stage so nothing has to be done for that stage
if (HAZARD(dt_m)) {
// Hazard with instruction in memory stage
if (hazard_unit == MachineConfig::HU_STALL_FORWARD) {
// Forward result value
if (dt_d.alu_req_rs && dt_m.rwrite == dt_d.inst.rs()) {
dt_d.val_rs = dt_m.towrite_val;
dt_d.ff_rs = FORWARD_FROM_W;
}
if (dt_d.alu_req_rt && dt_m.rwrite == dt_d.inst.rt()) {
dt_d.val_rt = dt_m.towrite_val;
dt_d.ff_rt = FORWARD_FROM_W;
}
} else
stall = true;
}
if (HAZARD(dt_e)) {
// Hazard with instruction in execute stage
if (hazard_unit == MachineConfig::HU_STALL_FORWARD) {
if (dt_e.memread)
stall = true;
else {
// Forward result value
if (dt_d.alu_req_rs && dt_e.rwrite == dt_d.inst.rs()) {
dt_d.val_rs = dt_e.alu_val;
dt_d.ff_rs = FORWARD_FROM_M;
}
if (dt_d.alu_req_rt && dt_e.rwrite == dt_d.inst.rt()) {
dt_d.val_rt = dt_e.alu_val;
dt_d.ff_rt = FORWARD_FROM_M;
}
}
} else
stall = true;
}
#undef HAZARD
if (dt_e.rwrite != 0 && dt_e.regwrite &&
((dt_d.bjr_req_rs && dt_d.inst.rs() == dt_e.rwrite) ||
(dt_d.bjr_req_rt && dt_d.inst.rt() == dt_e.rwrite))) {
stall = true;
} else {
if (hazard_unit != MachineConfig::HU_STALL_FORWARD) {
if (dt_m.rwrite != 0 && dt_m.regwrite &&
((dt_d.bjr_req_rs && dt_d.inst.rs() == dt_m.rwrite) ||
(dt_d.bjr_req_rt && dt_d.inst.rt() == dt_m.rwrite)))
stall = true;
} else {
if (dt_m.rwrite != 0 && dt_m.regwrite &&
dt_d.bjr_req_rs && dt_d.inst.rs() == dt_m.rwrite) {
dt_d.val_rs = dt_m.towrite_val;
dt_d.forward_m_d_rs = true;
}
if (dt_m.rwrite != 0 && dt_m.regwrite &&
dt_d.bjr_req_rt && dt_d.inst.rt() == dt_m.rwrite) {
dt_d.val_rt = dt_m.towrite_val;
dt_d.forward_m_d_rt = true;
}
}
}
emit forward_m_d_rs_value(dt_d.forward_m_d_rs);
emit forward_m_d_rt_value(dt_d.forward_m_d_rt);
}
#if 0
if (stall)
printf("STALL\n");
else if(dt_d.forward_m_d_rs || dt_d.forward_m_d_rt)
printf("f_m_d_rs %d f_m_d_rt %d\n", (int)dt_d.forward_m_d_rs, (int)dt_d.forward_m_d_rt);
printf("D: %s inst.type %d dt_d.inst.rs [%d] dt_d.inst.rt [%d] dt_d.ff_rs %d dt_d.ff_rt %d E: regwrite %d inst.type %d rwrite [%d] M: regwrite %d inst.type %d rwrite [%d] \n",
dt_d.inst.to_str().toLocal8Bit().data(),
dt_d.inst.type(), dt_d.inst.rs(), dt_d.inst.rt(), dt_d.ff_rs, dt_d.ff_rt,
dt_e.regwrite, dt_e.inst.type(), dt_e.rwrite,
dt_m.regwrite, dt_m.inst.type(), dt_m.rwrite);
#endif
#if 0
printf("PC 0x%08lx\n", (unsigned long)dt_f.inst_addr);
#endif
// Now process program counter (loop connections from decode stage)
if (!stall) {
dt_f = fetch(skip_break);
if (handle_pc(dt_d)) {
dt_f.in_delay_slot = true;
} else {
if (dt_d.nb_skip_ds) {
dtFetchInit(dt_f);
emit instruction_fetched(dt_f.inst, dt_f.inst_addr, dt_f.excause);
}
}
} else {
// Run fetch stage on empty
fetch(skip_break);
// clear decode latch (insert nope to execute stage)
dtDecodeInit(dt_d);
emit instruction_decoded(dt_d.inst, dt_d.inst_addr, dt_d.excause);
}
}
void CorePipelined::do_reset() {
dtFetchInit(dt_f);
dt_f.inst_addr = 0;
dtDecodeInit(dt_d);
dt_d.inst_addr = 0;
dtExecuteInit(dt_e);
dt_e.inst_addr = 0;
dtMemoryInit(dt_m);
dt_m.inst_addr = 0;
}
bool StopExceptionHandler::handle_exception(Core *core, Registers *regs,
ExceptionCause excause, std::uint32_t inst_addr,
std::uint32_t next_addr, std::uint32_t jump_branch_pc,
bool in_delay_slot, std::uint32_t mem_ref_addr) {
#if 0
printf("Exception cause %d instruction PC 0x%08lx next PC 0x%08lx jump branch PC 0x%08lx "
"in_delay_slot %d registers PC 0x%08lx mem ref 0x%08lx\n",
excause, (unsigned long)inst_addr, (unsigned long)next_addr,
(unsigned long)jump_branch_pc, (int)in_delay_slot,
(unsigned long)regs->read_pc(), (unsigned long)mem_ref_addr);
#else
(void)excause; (void)inst_addr; (void)next_addr; (void)mem_ref_addr; (void)regs;
(void)jump_branch_pc; (void)in_delay_slot;
#endif
emit core->stop_on_exception_reached();
return true;
};
|