1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
|
#include "core.h"
#include "programloader.h"
using namespace machine;
#define DM_SUPPORTED (1L<<0)
#define DM_MEMWRITE (1L<<1)
#define DM_MEMREAD (1L<<2)
#define DM_ALUSRC (1L<<3)
#define DM_REGD (1L<<4)
#define DM_REGWRITE (1L<<5)
struct DecodeMap {
long flags;
enum AluOp alu;
enum MemoryAccess::AccessControl mem_ctl;
};
#define NOALU .alu = ALU_OP_SLL
#define NOMEM .mem_ctl = MemoryAccess::AC_NONE
#define NOPE { .flags = 0, NOALU, NOMEM }
#define FLAGS_ALU_I (DM_SUPPORTED | DM_ALUSRC | DM_REGWRITE)
// This is map from opcode to signals.
static const struct DecodeMap dmap[] = {
{ .flags = DM_SUPPORTED | DM_REGD | DM_REGWRITE, NOALU, NOMEM }, // Alu operations (aluop is decoded from function explicitly)
{ .flags = DM_SUPPORTED, NOALU, NOMEM }, // REGIMM (BLTZ, BGEZ)
{ .flags = DM_SUPPORTED, NOALU, NOMEM }, // J
NOPE, // JAL
{ .flags = DM_SUPPORTED, NOALU, NOMEM }, // BEQ
{ .flags = DM_SUPPORTED, NOALU, NOMEM }, // BNE
{ .flags = DM_SUPPORTED, NOALU, NOMEM }, // BLEZ
{ .flags = DM_SUPPORTED, NOALU, NOMEM }, // BGTZ
{ .flags = FLAGS_ALU_I, .alu = ALU_OP_ADD, NOMEM }, // ADDI
{ .flags = FLAGS_ALU_I, .alu = ALU_OP_ADDU, NOMEM }, // ADDIU
{ .flags = FLAGS_ALU_I, .alu = ALU_OP_SLT, NOMEM }, // SLTI
{ .flags = FLAGS_ALU_I, .alu = ALU_OP_SLTU, NOMEM }, // SLTIU
{ .flags = FLAGS_ALU_I, .alu = ALU_OP_AND, NOMEM }, // ANDI
{ .flags = FLAGS_ALU_I, .alu = ALU_OP_OR, NOMEM }, // ORI
{ .flags = FLAGS_ALU_I, .alu = ALU_OP_XOR, NOMEM }, // XORI
{ .flags = FLAGS_ALU_I, .alu = ALU_OP_LUI, NOMEM}, // LUI
NOPE, // 16
NOPE, // 17
NOPE, // 18
NOPE, // 19
NOPE, // 20
NOPE, // 21
NOPE, // 22
NOPE, // 23
NOPE, // 24
NOPE, // 25
NOPE, // 26
NOPE, // 27
NOPE, // 28
NOPE, // 29
NOPE, // 30
NOPE, // 31
{ .flags = DM_SUPPORTED | DM_ALUSRC | DM_REGWRITE | DM_MEMREAD, .alu = ALU_OP_ADD, .mem_ctl = MemoryAccess::AC_BYTE }, // LB
{ .flags = DM_SUPPORTED | DM_ALUSRC | DM_REGWRITE | DM_MEMREAD, .alu = ALU_OP_ADD, .mem_ctl = MemoryAccess::AC_HALFWORD }, // LH
NOPE, // LWL
{ .flags = DM_SUPPORTED | DM_ALUSRC | DM_REGWRITE | DM_MEMREAD, .alu = ALU_OP_ADD, .mem_ctl = MemoryAccess::AC_WORD }, // LW
{ .flags = DM_SUPPORTED | DM_ALUSRC | DM_REGWRITE | DM_MEMREAD, .alu = ALU_OP_ADD, .mem_ctl = MemoryAccess::AC_BYTE_UNSIGNED }, // LBU
{ .flags = DM_SUPPORTED | DM_ALUSRC | DM_REGWRITE | DM_MEMREAD, .alu = ALU_OP_ADD, .mem_ctl = MemoryAccess::AC_HALFWORD_UNSIGNED }, // LHU
NOPE, // LWR
NOPE, // 39
{ .flags = DM_SUPPORTED | DM_ALUSRC | DM_MEMWRITE, .alu = ALU_OP_ADD, .mem_ctl = MemoryAccess::AC_BYTE }, // SB
{ .flags = DM_SUPPORTED | DM_ALUSRC | DM_MEMWRITE, .alu = ALU_OP_ADD, .mem_ctl = MemoryAccess::AC_HALFWORD }, // SH
NOPE, // SWL
{ .flags = DM_SUPPORTED | DM_ALUSRC | DM_MEMWRITE, .alu = ALU_OP_ADD, .mem_ctl = MemoryAccess::AC_WORD }, // SW
NOPE, // 44
NOPE, // 45
NOPE, // SWR
NOPE, // 47
NOPE, // 48
NOPE, // 49
NOPE, // 50
NOPE, // 51
NOPE, // 52
NOPE, // 53
NOPE, // 54
NOPE, // 55
NOPE, // 56
NOPE, // 57
NOPE, // 58
NOPE, // 59
NOPE, // 60
NOPE, // 61
NOPE, // 62
NOPE // 63
};
Core::Core(Registers *regs, MemoryAccess *mem_program, MemoryAccess *mem_data) {
cycle_c = 0;
this->regs = regs;
this->mem_program = mem_program;
this->mem_data = mem_data;
}
void Core::step() {
cycle_c++;
do_step();
}
void Core::reset() {
cycle_c = 0;
do_reset();
}
unsigned Core::cycles() {
return cycle_c;
}
struct Core::dtFetch Core::fetch() {
Instruction inst(mem_program->read_word(regs->read_pc()));
emit instruction_fetched(inst);
return {
.inst = inst
};
}
struct Core::dtDecode Core::decode(const struct dtFetch &dt) {
emit instruction_decoded(dt.inst);
const struct DecodeMap &dec = dmap[dt.inst.opcode()];
if (!(dec.flags & DM_SUPPORTED))
throw QTMIPS_EXCEPTION(UnsupportedInstruction, "Instruction with following opcode is not supported", QString::number(dt.inst.opcode(), 16));
return {
.inst = dt.inst,
.memread = dec.flags & DM_MEMREAD,
.memwrite = dec.flags & DM_MEMWRITE,
.alusrc = dec.flags & DM_ALUSRC,
.regd = dec.flags & DM_REGD,
.regwrite = dec.flags & DM_REGWRITE,
.aluop = dt.inst.opcode() == 0 ? (enum AluOp)dt.inst.funct() : dec.alu,
.memctl = dec.mem_ctl,
.val_rs = regs->read_gp(dt.inst.rs()),
.val_rt = regs->read_gp(dt.inst.rt()),
};
}
struct Core::dtExecute Core::execute(const struct dtDecode &dt) {
emit instruction_executed(dt.inst);
// Handle conditional move (we have to change regwrite signal if conditional is not met)
bool regwrite = dt.regwrite;
if (dt.inst.opcode() == 0 && ((dt.inst.funct() == ALU_OP_MOVZ && dt.val_rt != 0) || (dt.inst.funct() == ALU_OP_MOVN && dt.val_rt == 0)))
regwrite = false;
std::uint32_t alu_sec = dt.val_rt;
if (dt.alusrc)
alu_sec = ((dt.inst.immediate() & 0x8000) ? 0xFFFF0000 : 0) | (dt.inst.immediate()); // Sign extend to 32bit
return {
.inst = dt.inst,
.memread = dt.memread,
.memwrite = dt.memwrite,
.regwrite = regwrite,
.memctl = dt.memctl,
.val_rt = dt.val_rt,
.rwrite = dt.regd ? dt.inst.rd() : dt.inst.rt(),
.alu_val = alu_operate(dt.aluop, dt.val_rs, alu_sec, dt.inst.shamt(), regs),
};
}
struct Core::dtMemory Core::memory(const struct dtExecute &dt) {
emit instruction_memory(dt.inst);
std::uint32_t towrite_val = dt.alu_val;
if (dt.memwrite)
mem_data->write_ctl(dt.memctl, dt.alu_val, dt.val_rt);
else if (dt.memread)
towrite_val = mem_data->read_ctl(dt.memctl, dt.alu_val);
return {
.inst = dt.inst,
.regwrite = dt.regwrite,
.rwrite = dt.rwrite,
.towrite_val = towrite_val,
};
}
void Core::writeback(const struct dtMemory &dt) {
emit instruction_writeback(dt.inst);
if (dt.regwrite)
regs->write_gp(dt.rwrite, dt.towrite_val);
}
void Core::handle_pc(const struct dtDecode &dt) {
emit instruction_program_counter(dt.inst);
bool branch = false;
bool link = false;
// TODO implement link
switch (dt.inst.opcode()) {
case 0: // JR (JALR)
if (dt.inst.funct() == ALU_OP_JR || dt.inst.funct() == ALU_OP_JALR) {
regs->pc_abs_jmp(dt.val_rs);
return;
}
break;
case 1: // REGIMM instruction
//switch (dt.inst.rt() & 0xF) { // Should be used when linking is supported
switch (dt.inst.rt()) {
case 0: // BLTZ(AL)
branch = (std::int32_t)dt.val_rs < 0;
break;
case 1: // BGEZ(AL)
branch = (std::int32_t)dt.val_rs >= 0;
break;
default:
throw QTMIPS_EXCEPTION(UnsupportedInstruction, "REGIMM instruction with unknown rt code", QString::number(dt.inst.rt(), 16));
}
link = dt.inst.rs() & 0x10;
break;
case 2: // J
case 3: // JAL
regs->pc_abs_jmp_28(dt.inst.address() << 2);
return;
case 4: // BEQ
branch = dt.val_rs == dt.val_rt;
break;
case 5: // BNE
branch = dt.val_rs != dt.val_rt;
break;
case 6: // BLEZ
branch = (std::int32_t)dt.val_rs <= 0;
break;
case 7: // BGTZ
branch = (std::int32_t)dt.val_rs > 0;
break;
}
if (branch)
regs->pc_jmp((std::int32_t)(((dt.inst.immediate() & 0x8000) ? 0xFFFF0000 : 0) | (dt.inst.immediate() << 2)));
else
regs->pc_inc();
}
void Core::dtFetchInit(struct dtFetch &dt) {
dt.inst = Instruction(0x00);
}
void Core::dtDecodeInit(struct dtDecode &dt) {
dt.inst = Instruction(0x00);
dt.memread = false;
dt.memwrite = false;
dt.alusrc = false;
dt.regd = false;
dt.regwrite = false;
dt.aluop = ALU_OP_SLL;
dt.val_rs = 0;
dt.val_rt = 0;
}
void Core::dtExecuteInit(struct dtExecute &dt) {
dt.inst = Instruction(0x00);
dt.memread = false;
dt.memwrite = false;
dt.regwrite = false;
dt.memctl = MemoryAccess::AC_NONE;
dt.val_rt = 0;
dt.rwrite = false;
dt.alu_val = 0;
}
void Core::dtMemoryInit(struct dtMemory &dt) {
dt.inst = Instruction(0x00);
dt.regwrite = false;
dt.rwrite = false;
dt.towrite_val = 0;
}
CoreSingle::CoreSingle(Registers *regs, MemoryAccess *mem_program, MemoryAccess *mem_data, bool jmp_delay_slot) : \
Core(regs, mem_program, mem_data) {
if (jmp_delay_slot)
jmp_delay_decode = new struct Core::dtDecode();
else
jmp_delay_decode = nullptr;
reset();
}
CoreSingle::~CoreSingle() {
if (jmp_delay_decode != nullptr)
delete jmp_delay_decode;
}
void CoreSingle::do_step() {
struct dtFetch f = fetch();
struct dtDecode d = decode(f);
struct dtExecute e = execute(d);
struct dtMemory m = memory(e);
writeback(m);
if (jmp_delay_decode != nullptr) {
handle_pc(*jmp_delay_decode);
*jmp_delay_decode = d; // Copy current decode
} else
handle_pc(d);
}
void CoreSingle::do_reset() {
if (jmp_delay_decode != nullptr)
Core::dtDecodeInit(*jmp_delay_decode);
}
CorePipelined::CorePipelined(Registers *regs, MemoryAccess *mem_program, MemoryAccess *mem_data, enum MachineConfig::HazardUnit hazard_unit) : \
Core(regs, mem_program, mem_data) {
this->hazard_unit = hazard_unit;
reset();
}
void CorePipelined::do_step() {
// Process stages
writeback(dt_m);
dt_m = memory(dt_e);
dt_e = execute(dt_d);
dt_d = decode(dt_f);
// TODO signals
bool stall = false;
if (hazard_unit != MachineConfig::HU_NONE) {
// Note: We make exception with $0 as that has no effect when written and is used in nop instruction
#define HAZARD(STAGE) ( \
(STAGE).regwrite && (STAGE).rwrite != 0 && \
((STAGE).rwrite == dt_d.inst.rs() || ( \
((STAGE).inst.type() == Instruction::T_R || (STAGE).inst.is_store()) && \
(STAGE).rwrite == dt_d.inst.rt()) \
)) // Note: We make exception with $0 as that has no effect and is used in nop instruction
if (HAZARD(dt_e)) {
// Hazard with instruction in execute stage
if (hazard_unit == MachineConfig::HU_STALL_FORWARD) {
if (dt_e.memread) // TODO extend by branch instructions
stall = true;
else {
// Forward result value
if (dt_e.rwrite == dt_d.inst.rs())
dt_d.val_rs = dt_e.alu_val;
if (dt_e.rwrite == dt_d.inst.rt())
dt_d.val_rt = dt_e.alu_val;
}
} else
stall = true;
}
if (HAZARD(dt_m)) {
// Hazard with instruction in memory stage
if (hazard_unit == MachineConfig::HU_STALL_FORWARD) {
// Forward result value
if (dt_m.rwrite == dt_d.inst.rs())
dt_d.val_rs = dt_m.towrite_val;
if (dt_m.rwrite == dt_d.inst.rt())
dt_d.val_rt = dt_m.towrite_val;
} else
stall = true;
}
// Write back stage combinatoricly propagates written instruction to decode stage so nothing has to be done for that stage
#undef HAZARD
}
// Now process program counter (loop connections from decode stage)
if (!stall) {
dt_f = fetch();
handle_pc(dt_d);
} else {
// Run fetch stage on empty
fetch();
// clear decode latch (insert nope to execute stage)
dtDecodeInit(dt_d);
}
}
void CorePipelined::do_reset() {
dtFetchInit(dt_f);
dtDecodeInit(dt_d);
dtExecuteInit(dt_e);
dtMemoryInit(dt_m);
}
|