1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
|
from random import randrange
SHAPES = [
[[1, 1, 1],
[0, 1, 0]],
[[0, 2, 2],
[2, 2, 0]],
[[3, 3, 0],
[0, 3, 3]],
[[4, 0, 0],
[4, 4, 4]],
[[0, 0, 5],
[5, 5, 5]],
[[6, 6, 6, 6]],
[[7, 7],
[7, 7]]
]
COLORS = [
'black',
'FF5500',
'64C873',
'786CF5',
'FF8C32',
'327834',
'92CA49',
'96A1DA'
]
class Game:
"game it self"
def __init__(self, matrix):
self.matrix = matrix
matrix.fill('black') # Clear game area
self.mx = [None]*(matrix.width - 3)
for i in range(len(self.mx)):
self.mx[i] = [0]*matrix.height
self.stone_next = SHAPES[randrange(len(SHAPES))][:]
# Don't have to check result as it should always be successful
assert self.new_stone()
self.step = 0
self.step_edge = 60
matrix.display()
def new_stone(self):
"Create new stone to next one and move next one to stone"
self.stone = self.stone_next
self.stone_next = SHAPES[randrange(len(SHAPES))][:] # Note: we do copy
# Render stone on top
self.stone_x = 3
self.stone_y = 0
if self.__check_collision__(self.stone_x, self.stone_y, self.stone):
# locate different place
self.stone_x = 0
while self.stone_x < (self.matrix.width - 3) and \
self.__check_collision__(self.stone_x, self.stone_y,
self.stone):
self.stone_x += 1
if self.stone_x >= (self.matrix.width - 3):
# Than game over
return False
self.__render_stone__()
# Render next stone
for x in range(2):
for y in range(4):
if x < len(self.stone_next) and y < len(self.stone_next[x]):
self.matrix.pixel(11 - x, 9 - y,
COLORS[self.stone_next[x][y]])
else:
self.matrix.pixel(11 - x, 9 - y, 'black')
return True
def __render_stone__(self):
"Render stone"
for x in range(len(self.stone)):
for y in range(len(self.stone[x])):
if self.stone[x][y] != 0:
self.matrix.pixel(11 - x - 3 - self.stone_x,
9 - y - self.stone_y,
COLORS[self.stone[x][y]])
def __clear_stone__(self):
"Clear rendered stone"
for x in range(len(self.stone)):
for y in range(len(self.stone[x])):
if self.stone[x][y] != 0:
self.matrix.pixel(11 - x - 3 - self.stone_x,
9 - y - self.stone_y,
'black')
def __check_collision__(self, x, y, stone):
"Check if stone collides. Returns True of so."
for a in range(len(stone)):
for b in range(len(stone[a])):
sx = 11 - a - x
sy = 9 - b - y
print("sx:{0} sy:{1} mx:{2}:{3}".format(
sx, sy, len(self.mx), len(self.mx[0])
))
if stone[a][b] != 0 and (
sx < 0 or sy < 0 or sx > 11 or sy > 9 or
self.mx[sx][sy] != 0):
return True
return False
def __place__(self):
"Stone can't move so place it, check lines and generate new one"
for x in range(len(self.stone)):
for y in range(len(self.stone[x])):
if self.stone[x][y] != 0:
self.mx[11 - x - self.stone_x][9 - y - self.stone_y] =\
self.stone[x][y]
# TODO Line completion and removal and step division
return self.new_stone()
def __down__(self):
"Move stone down"
new_y = self.stone_y + 1
if self.__check_collision__(self.stone_x, new_y, self.stone):
return self.__place__()
else:
self.__clear_stone__()
self.stone_y = new_y
self.__render_stone__()
def __rotate__(self):
"Rotate stone"
rotated = [
[self.stone[y][x] for y in range(len(self.stone))]
for x in range(len(self.stone[0]) - 1, -1, -1)]
if not self.__check_collision__(self.stone_x, self.stone_y, rotated):
self.stone = rotated
self.__clear_stone__()
self.__render_stone__()
def __move__(self, left):
"Move stone left or right"
new_x = self.stone_x
if left:
new_x += 1
else:
new_x -= 1
if not self.__check_collision__(new_x, self.stone_y, self.stone):
self.__clear_stone__()
self.stone_x = new_x
self.__render_stone__()
def tick(self, input):
"Do game tick"
gameover = False
if input['up']:
self.__rotate__()
if input['left'] != input['right']:
self.__move__(input['left'])
if self.step >= self.step_edge or \
(input['down'] and self.step >= self.step_edge/2):
gameover = self.__down__()
self.step = 0
else:
self.step += 1
self.matrix.display()
return not gameover
|