1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
|
#include "memory.h"
// Note about endianness: Current memory implementation is expected to be a big endian.
// But we can be running on little endian so we should do conversion from bytes to word according that.
void MemoryAccess::write_hword(std::uint32_t offset, std::uint16_t value) {
#if __BYTE_ORDER == __LITTLE_ENDIAN
this->write_byte(offset++, (std::uint8_t)(value >> 8));
this->write_byte(offset, (std::uint8_t)value);
#else
this->write_byte(offset++, (std::uint8_t)value);
this->write_byte(offset, (std::uint8_t)(value >> 8));
#endif
}
void MemoryAccess::write_word(std::uint32_t offset, std::uint32_t value) {
#if __BYTE_ORDER == __LITTLE_ENDIAN
this->write_byte(offset++, (std::uint8_t)(value >> 24));
this->write_byte(offset++, (std::uint8_t)(value >> 16));
this->write_byte(offset++, (std::uint8_t)(value >> 8));
this->write_byte(offset, (std::uint8_t)value);
#else
this->write_byte(offset++, (std::uint8_t)value);
this->write_byte(offset++, (std::uint8_t)(value >> 8));
this->write_byte(offset++, (std::uint8_t)(value >> 16));
this->write_byte(offset, (std::uint8_t)(value >> 24));
#endif
}
std::uint16_t MemoryAccess::read_hword(std::uint32_t offset) {
std::uint16_t dt = 0;
#if __BYTE_ORDER == __LITTLE_ENDIAN
dt |= (this->read_byte(offset++) << 8);
dt |= this->read_byte(offset);
#else
dt |= this->read_byte(offset++);
dt |= (this->read_byte(offset) << 8);
#endif
return dt;
}
std::uint32_t MemoryAccess::read_word(std::uint32_t offset) {
std::uint32_t dt = 0;
#if __BYTE_ORDER == __LITTLE_ENDIAN
dt |= (this->read_byte(offset++) << 24);
dt |= (this->read_byte(offset++) << 16);
dt |= (this->read_byte(offset++) << 8);
dt |= this->read_byte(offset);
#else
dt |= this->read_byte(offset++);
dt |= (this->read_byte(offset++) << 8);
dt |= (this->read_byte(offset++) << 16);
dt |= (this->read_byte(offset) << 24);
#endif
return dt;
}
MemorySection::MemorySection(std::uint32_t length) {
this->length = length;
this->dt = new std::uint8_t[length];
}
MemorySection::~MemorySection() {
delete this->dt;
}
using namespace std;
void MemorySection::write_byte(std::uint32_t offset, std::uint8_t value) {
if (offset >= this->length)
throw QTMIPS_EXCEPTION(OutOfMemoryAccess, "Trying to write outside of the memory section", QString("Accessing using offset: ") + QString(offset));
this->dt[offset] = value;
}
std::uint8_t MemorySection::read_byte(std::uint32_t offset) {
if (offset >= this->length)
throw QTMIPS_EXCEPTION(OutOfMemoryAccess, "Trying to read outside of the memory section", QString("Accessing using offset: ") + QString(offset));
return this->dt[offset];
}
// Number of bites per row on lookup tree
#define MEMORY_TREE_ROW ((32 - MEMORY_SECTION_BITS) / MEMORY_TREE_H)
// Size of row in memory lookup tree
#define MEMORY_TREE_LEN (1 << MEMORY_TREE_ROW)
// Just do some sanity checks
#if (MEMORY_TREE_LEN == 0)
#error Nonzero memory tree row size
#endif
#if (((32 - MEMORY_SECTION_BITS) % MEMORY_TREE_H) != 0)
#error Memory tree is not fully divisible by memory tree height
#endif
#if (MEMORY_TREE_H < 2)
#error Memory tree have to be higher or in limit equal to two
#endif
union MemoryTree {
union MemoryTree *mt;
MemorySection *sec;
};
Memory::Memory() {
this->mt_root = allocate_section_tree();
}
Memory::~Memory() {
// Free up memory tree
// TODO
}
union MemoryTree *Memory::allocate_section_tree() {
union MemoryTree *mt = new union MemoryTree[MEMORY_TREE_LEN];
for (size_t i = 0; i < MEMORY_TREE_LEN; i++)
// Note that this also nulls sec pointer as those are both pointers and so they have same size
mt[i].mt = nullptr;
return mt;
}
// Create address mask with section length
#define ADDRESS_MASK(LEN) ((1 << LEN) - 1)
// Get index in tree node from address, length of row and tree depth
// ADDR is expected to be and address with lowest bites removed (MEMORY_SECTION_BITS)
#define ADDRESS_TREE_INDEX(DEPTH, ADDR) ((ADDR >> (DEPTH * MEMORY_TREE_ROW)) & ADDRESS_MASK(MEMORY_TREE_ROW))
MemorySection *Memory::get_section(std::uint32_t address, bool create) {
std::uint32_t addr = address >> MEMORY_SECTION_BITS; // drop all bits for addressing inside of the section
union MemoryTree *w = this->mt_root;
size_t ii;
for (int i = 0; i < (MEMORY_TREE_H - 1); i++) {
ii = ADDRESS_TREE_INDEX(i, addr);
if (w[ii].mt == nullptr) { // We don't have this tree so allocate it
if (!create) // If we shouldn't be creating it than just return null
return nullptr;
w[ii].mt = allocate_section_tree();
}
w = w[ii].mt;
}
// Now expand last level
ii = ADDRESS_TREE_INDEX((MEMORY_TREE_H - 1), addr);
if (w[ii].sec == nullptr) {
if (!create)
return nullptr;
w[ii].sec = new MemorySection(1 << MEMORY_SECTION_BITS);
}
return w[ii].sec;
}
// Note about this address magic: we want to mask upper bits in address as those were used
// for section lookup. We do it using (2^BITS - 1).
#define SECTION_ADDRESS(ADDR) (ADDR & ADDRESS_MASK(MEMORY_SECTION_BITS))
void Memory::write_byte(std::uint32_t address, std::uint8_t value) {
MemorySection *section = this->get_section(address, true);
section->write_byte(SECTION_ADDRESS(address), value);
}
std::uint8_t Memory::read_byte(std::uint32_t address) {
MemorySection *section = this->get_section(address, true);
if (section == nullptr)
return 0;
else
return section->read_byte(SECTION_ADDRESS(address));
}
|